# Significance of Image Normalization in Texture Analysis

**Andrzej MATERKA** 

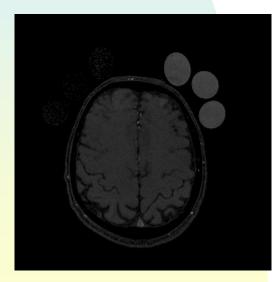
**Technical University of Lodz, Poland** 

# Aim of the study

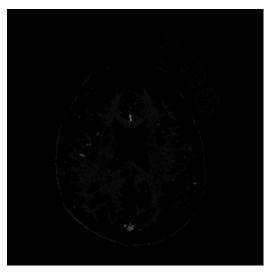
 to investigate the influence of image normalization on texture parameters

#### Motivation:

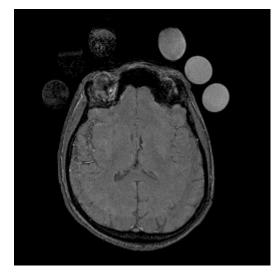
Large differences in image brightness (mean) and contrast (variance) in real-world images.



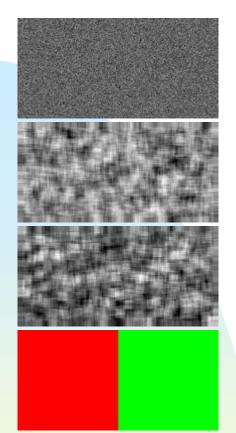
399-3-10.ima



399-3-28.ima



399-3-37.ima

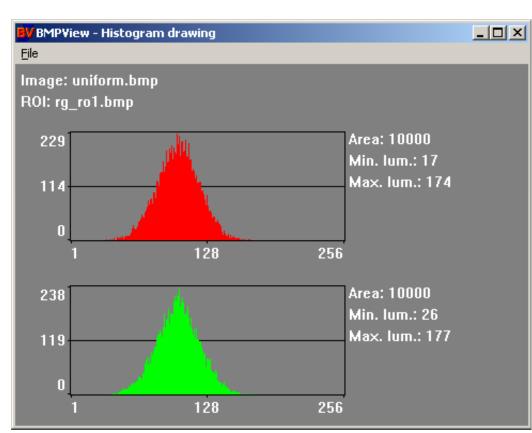


# Gaussian noise image *N1* m=100, s=20

local mean

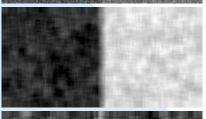
local variance

2 ROIs

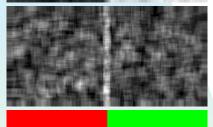




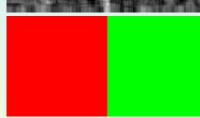
noise image *N2* m1=85, m2=115 s1=s2=20



local mean

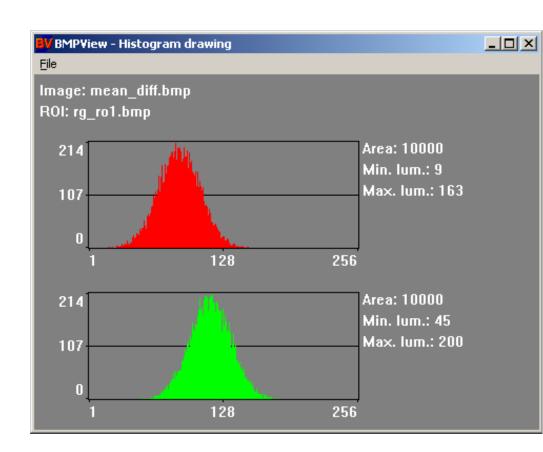


local variance



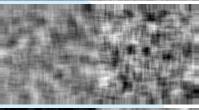
Difference in mean.

No actual difference in texture!

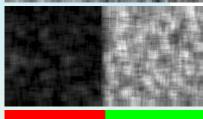




noise image *N3* m1=m2=100 s1=15, s2=25



local mean

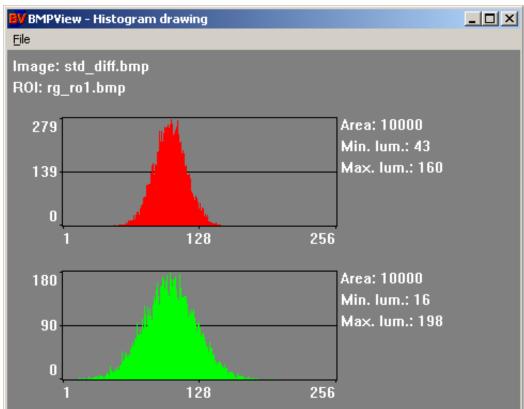


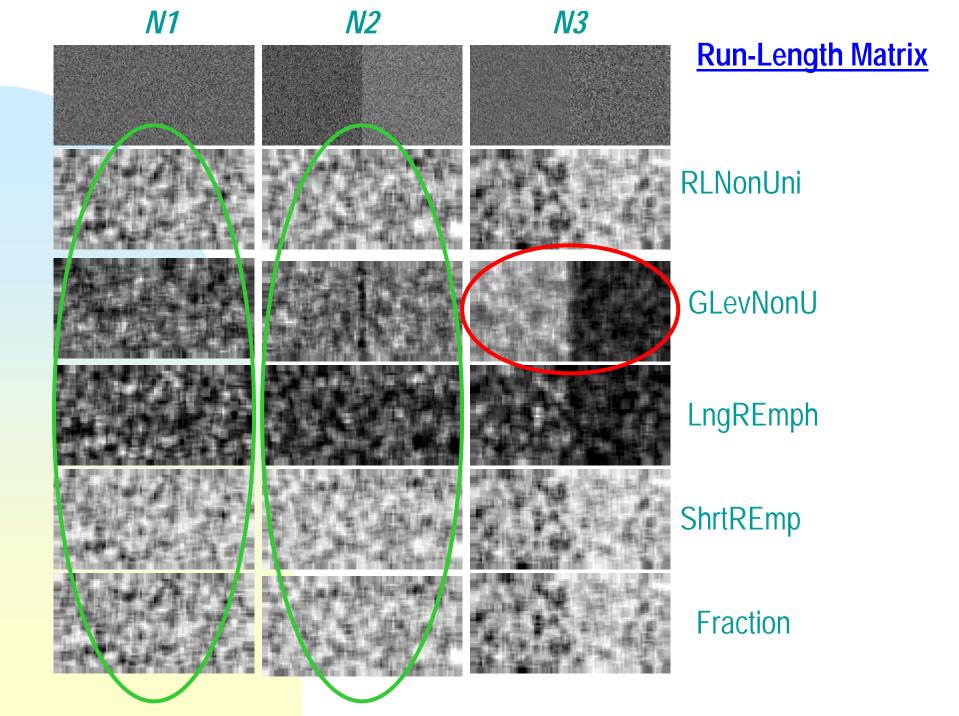
local variance



Difference in variance.

No actual difference in texture!





*N2* N3 **Gradient Features** GR\_Mean **GR\_Variance GR\_Skewness GR\_Kurtosis** Grads>0

# *N3 N2*

#### **Co-occurence matrix**

#### False detection of texture!

Sum Average S(1,0) - S(5,0)

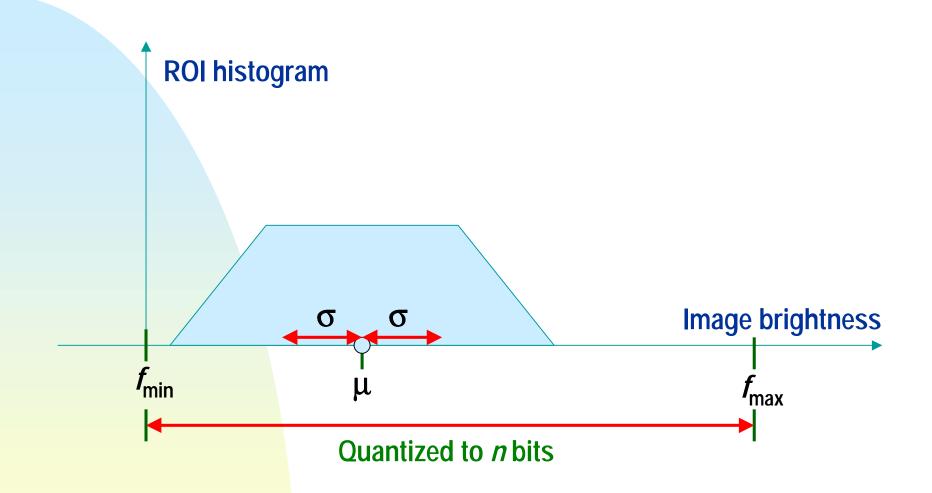
Contrast S(1,0) - S(5,0)

Entropy S(1,0))

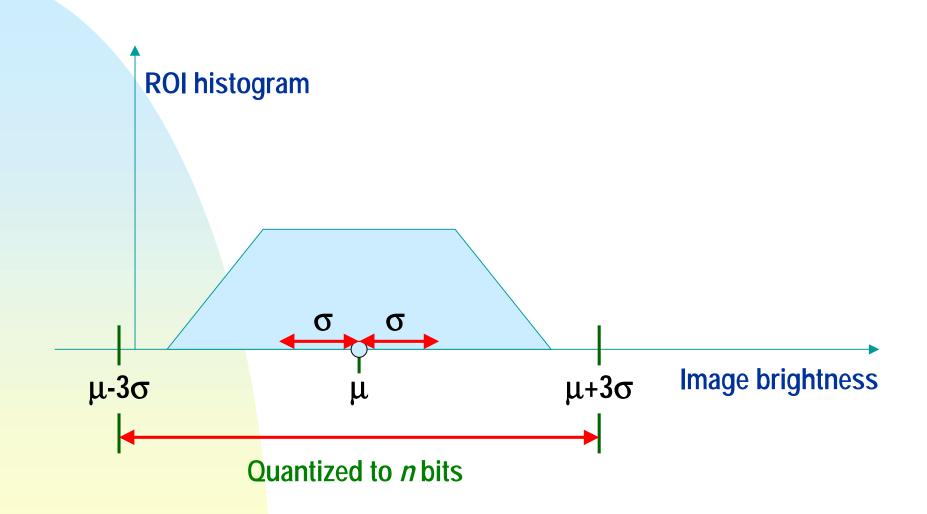
Angular Second Moment S(1,0))

Correlation S(1,0))

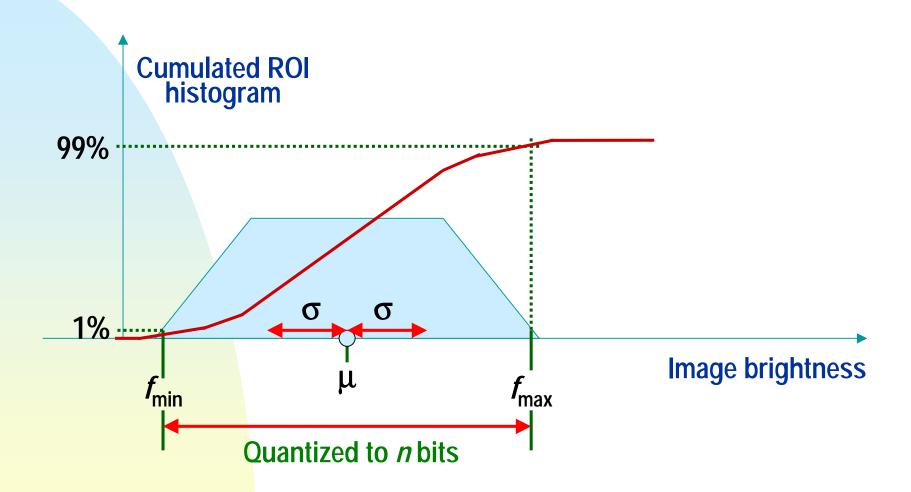
# Image normalization: 1) no normalization



# Image normalization: 2) '±3σ' scheme

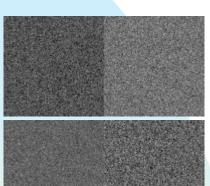


# Image normalization: 3) '1%-99%' scheme



#### **Experiment**

#### 10 samples per class







No normalization

3 sigma

1% - 99%

#### Co-occurence matrix S(1,0)

**Angular Second Moment** 

Contrast

Sum Of Squares

**Inverse Difference Moment** 

Sum Average

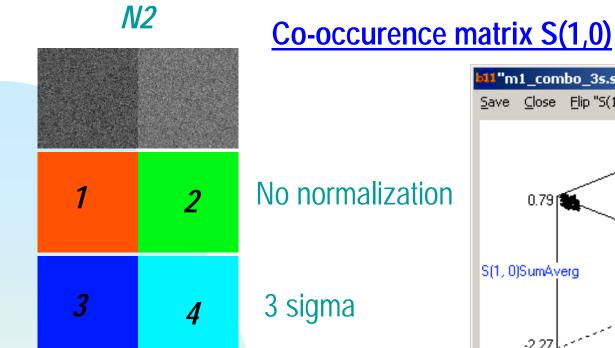
**Sum Variance** 

Sum Entropy

**Entropy** 

Difference Variance

Difference Entropy



Feature vector standardized: YES
\* Results [k-NN classification]

Missclassified data vectors: 10/40 [or 25.00%]
Sample No: 21; Category: 3; ClassResult: 4

Sample No: 22; Category: 4; ClassResult: 3

Sample No: 25; Category: 3; ClassResult: 4

Sample No: 26; Category: 4; ClassResult: 3

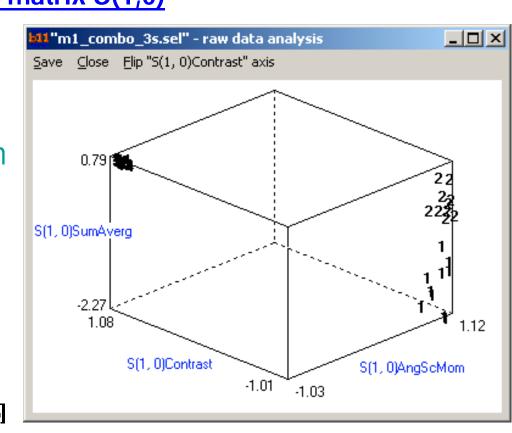
Sample No: 27; Category: 3; ClassResult: 4

Sample No: 28; Category: 4; ClassResult: 3

Sample No: 31; Category: 3; ClassResult: 4 Sample No: 36; Category: 4; ClassResult: 3

Sample No: 36; Category: 4; ClassResult: 3 Sample No: 37; Category: 3; ClassResult: 4

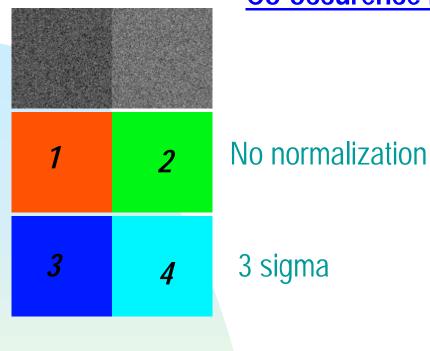
Sample No: 39; Category: 3; ClassResult: 4

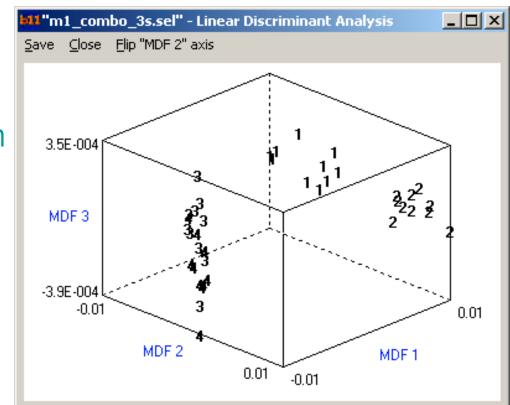


In the raw feature space, 3 sigma normalization helps remove the image mean efect.



#### Co-occurence matrix S(1,0) + LDA





\* Results [k-NN classification]

Feature vector standardized: YES

Missclassified data vectors: 8/40 [or 20.00%] Sample No: 22; Category: 4; ClassResult: 3

Sample No: 26; Category: 4; ClassResult: 3

Sample No: 27; Category: 3; ClassResult: 4

Sample No: 29; Category: 3; ClassResult: 4

Sample No: 33; Category: 3; ClassResult: 4

Sample No: 37; Category: 3; ClassResult: 4

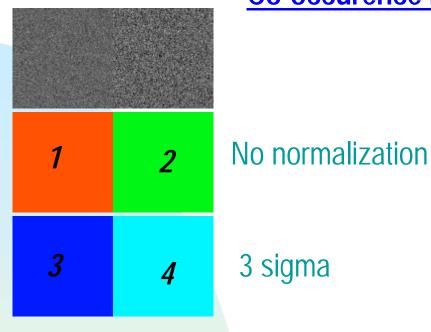
Sample No: 38; Category: 4; ClassResult: 3

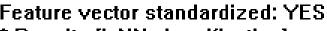
Sample No: 40; Category: 4; ClassResult: 3

The spurious classes are not visible in MDF space (LDA does not restore the image mean effect).



#### Co-occurence matrix S(1,0)





\* Results [k-NN classification] Missclassified data vectors: 11/40 [or 27.50%]

Sample No: 21; Category: 3; ClassResult: 4

Sample No: 23; Category: 3; ClassResult: 4

Sample No: 26; Category: 4; ClassResult: 3 Sample No: 27; Category: 3; ClassResult: 4

Sample No: 28; Category: 4; ClassResult: 3

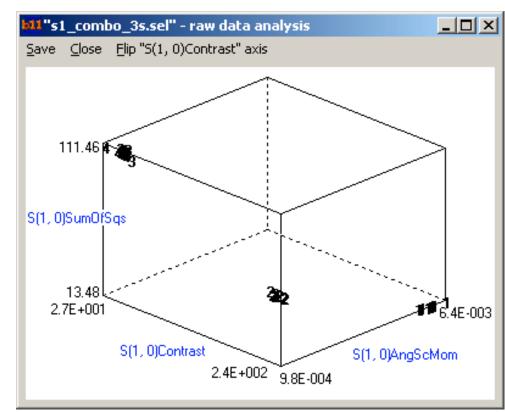
Sample No: 31; Category: 3; ClassResult: 4

Sample No: 32; Category: 4; ClassResult: 3

Sample No: 34; Category: 4; ClassResult: 3 Sample No: 35; Category: 3; ClassResult: 4

Sample No: 36; Category: 4; ClassResult: 3

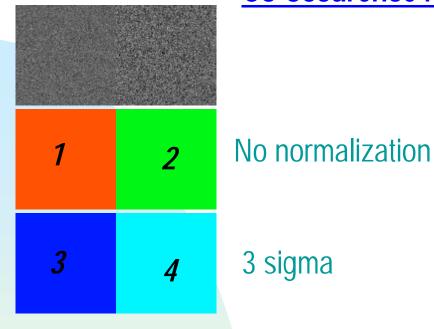
Sample No: 40; Category: 4; ClassResult: 3



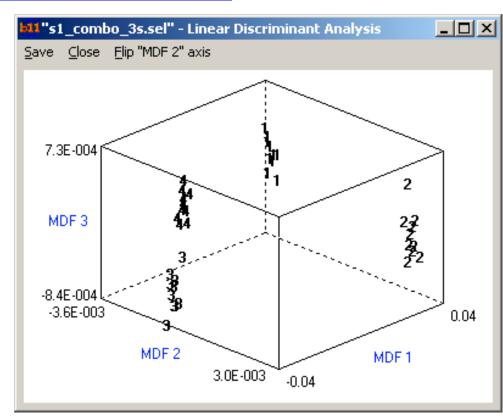
In the raw feature space, 3 sigma normalization helps remove the image variance efect.



#### Co-occurence matrix S(1,0) + LDA

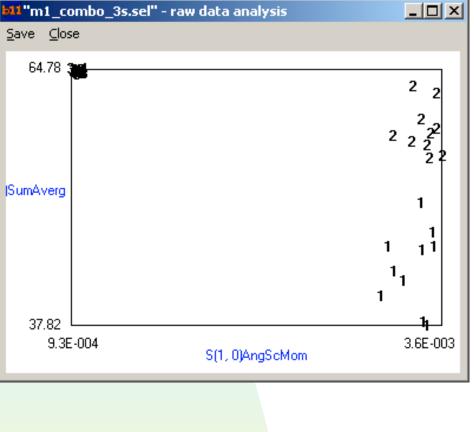


\* Results [k-NN classification] Missclassified data vectors: 0/40 [or 0.00%]



Still, it is possible to separate classes based on higher-order features - even if they actually differ only by variance (spurious effect).

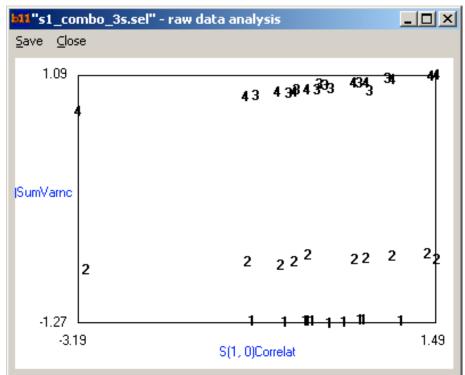
Hopefully, instrinsic texture properties may mask this effect



#### Co-occurence matrix S(1,0)



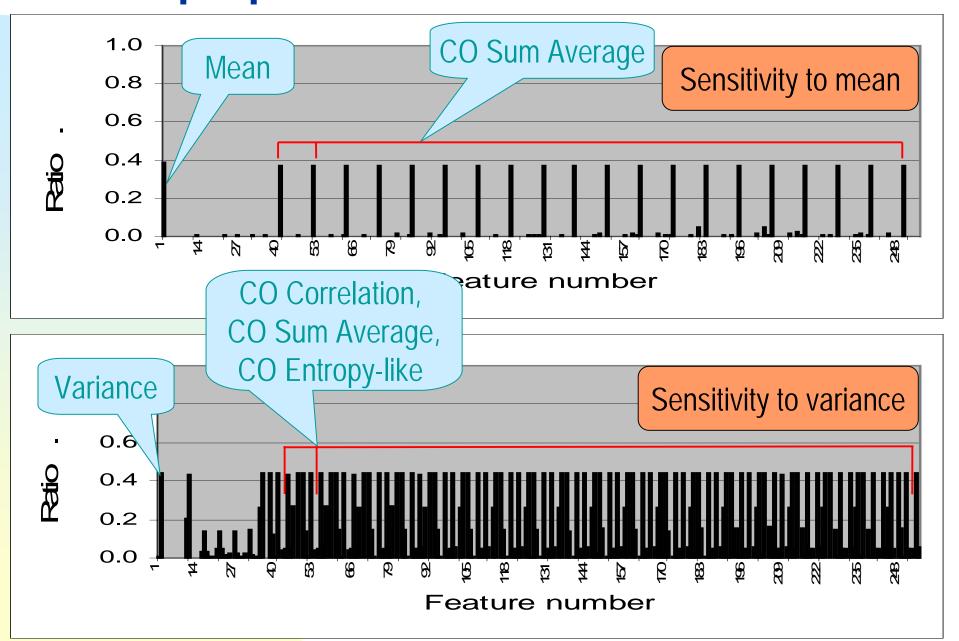
Sum Average is sensitive to image mean



N3

Image variance does not affect Correlation.

## **Feature properties**

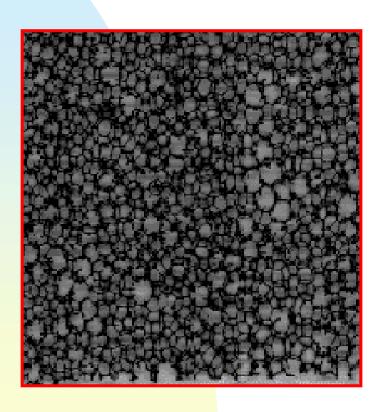


## Conclusion

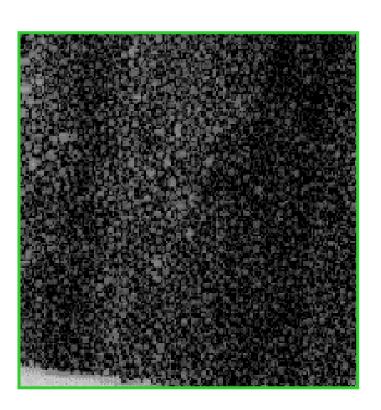
- Both ROI mean and ROI variance affect significantly higher order features, leading to spurious texture detection.
- Image normalization is necessary prior to parameter computation to reduce this effect.
- Further study is needed to find texture features that are truly independent on image first-order parameters.

# **Experiment: optical images**

reticulated foam of different porosity (2 texture classes)



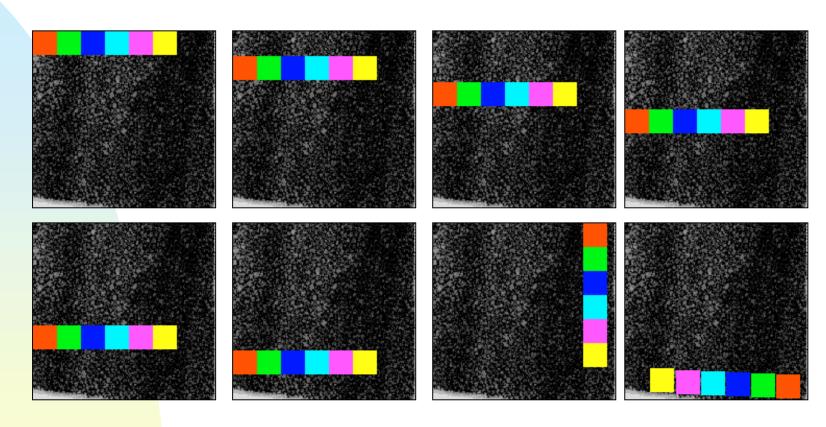
Foam 1 (large pore size)



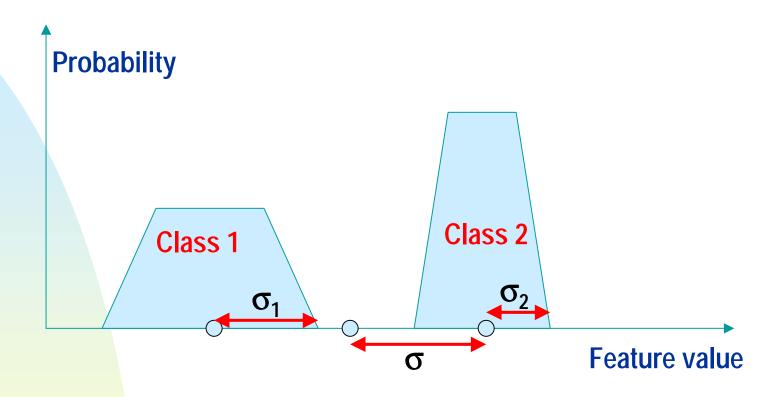
Foam 2 (small pore size)

## **Methods**

 computation of texture statistical parameters (48 ROI, each 23×23 pixels)



# Methods: texture class separation criterion



$$F = \frac{D}{V} = \frac{\sigma^2}{0.5(\sigma_1^2 + \sigma_2^2)}$$

Ratio of between-classes to within-classes variance.

#### Effect of ±3 $\sigma$ normalization

- Since  $\mu$  and  $\sigma^2$  are both constant [with regard to the  $(f_{\text{max}} f_{\text{min}})$  window], their effect on features disappears.
- Features that are masked by  $\mu$  and  $\sigma^2$  variation regain their ability to discriminate texture classes.
- Features that did not possess relevance to texture classes do not produce significant values of F anymore.

