Multicenter trial - glioblastoma texture evaluation and corresponding texture feature maps

Arvid Lundervold, University of Bergen, Norway COST B11 - WG 3, Angers 18-19 October, 2001

The data are available on the lodz server under /home/costb11/lothar/clinical examples/763/ 763-2-*.ima: fl3d 20/6/25° prae 763-4-*.ima: fl3d 20/6/25° post 763-3-*.ima: tse 5000/14,85 prae

Outline

• Histology, MRI methods and textural characteristics of human and experimental glioma

- Texture analysis and texture feature maps in multispectral images of glioblastoma acquired at DKFZ (study 763)
- Some conclusions and perspectives ...

- Glioblastoma multiforme (GBM) is the most aggressive form of the primary brain tumors known collectively as gliomas.
- These tumors arise from the supporting, glial cells of the brain during childhood and in adults.
- Gliomas do not spread throughout the body like other forms of cancer, but cause symptoms by invading the brain.
- Gliomas are graded by their microscopic appearance.
- As a rule their behavior can be predicted from this histology:
 - grade I (pilocytic astrocytomas) and
 - grade II (benign astrocytomas) tumors grow slowly over many years
 - grade IV (GBM) grows rapidly, invading and altering brain function,

and untreated, GMB's are rapidly lethal.

Normal WM

Glioblastoma

Monotonous appearance of normal brain white matter under the microscope

GBM contains atypical cells, dividing cells, necrosis and clumps of cells around blood vessels

Tumor characterization

"Compute" the probability of tumor tissue state (S) given the MR measurements or features $(x_1, x_2, ..., x_p)$

Angers, 2001

Glioblastoma - textural features cont.

Wash in and wash out (or bolus passage) in capillary bed of brain tumor voxel

Signal intensity vs. time

Arvid Lundervold COST B11 WG 3 Angers, 2001

Angers, 2001

" Perfusion Magnetic Resonance Imaging to Assess Brain Tumor Responses to New Therapies "

From: Michael H. Lev, MD, and Fred Hochberg, MD

Diffusion imaging

b=1000 S

Color coding of the three orthogonal diffusion encoded images

> G_x G_y

> > Gz

Siemens Vision

Diffusion Tensor Imaging (DTI)

Anisotropic diffusion of water

Diffusion tensor imaging of a 75 year old woman with stroke. $b=1000 \text{ s/mm}^2$ in 6 different directions. The diffusion tensor FLAIR sequence (ep2d_ir_dt6_2_ic_4aq.ek) was written by Dr. Jochen Hirsch at Klinikum Mannheim on a Siemens Vision. TA= min 42 s, 4 AC; Matrix=128 x 200, TR=6000 ms; TE=110 ms; TI=1950 ms; Thickness=5 mm; FOV=240 x 240 mm²

(Courtesy of Prof. L. Schad, DKFZ, Heidelberg) Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold

284

Multispectral imaging of glioblastoma (DKFZ)

Tissue anatomical and physiololgical features

Tissue classification of normal and abnormal tissue types from multispectral MR image acquisitions in GBM patients

- assessment of tumor growth rates and response to therapy

Growth Rates, MR Spectroscopy: Prognostic Markers for Glioblastoma Multiforme

Society for Neuro-Oncology, Chicago, Nov. 2000

Haney S, Thompson PM, Cloughesy TF, Alger JR, Frew AJ, Toga AW Laboratory of Neuro Imaging, Department of Neurology, Division of Brain Mapping; Neuro-Oncology Program, The Henry E. Singleton Brain Cancer Research Program; Dept. of Radiological Sciences; UCLA School of Medicine, Los Angeles, CA 90095

Experimental brain tumors in the rat

Data from Prof. Rolf Bjerkvig, University of Bergen

A-C Human xenograft in nude rats demonstrating tumor cell infiltration in brain parenchyma.

D & E. Human tumor obtained
by implantation of a permanent
human glioma cell line.
Tumor growth is here by expansion rather than by infiltration, and
image texture in the micrographs
have different characteristics.

Imaging of tumor growth in the rat brain using the finger coil on a 1.5 T Siemens Vision

Ip-loop-small/t1_se_sag, se_14b89.ykc 250 gr 0.5 ml Gd , TA=4:59, AC=3 Matrix=224*256os, TR/TE=440.0/14.0 SL=2.0 FoV=44*50 Voxel size = 0.20 x 0.20 x 2.0 mm³

Rat brain imaging on a clinical whole-body scanner

Image 3-12 (T1) TR/TE = 440/14 Image 4-25 (T2) TR/TE = 4000/96 Image 5-38 (T1 Gd) TR/TE = 440/14

se_14b89.ykc

Texture analysis in multispectral images of human glioblastoma acquired at DKFZ (study 763)

Phantoms

- R: Reticulated foam
 - coarse
 - empty
 - medium

L: Polystyrene granules - 2.00 - 3.15 - 1.25 - 2.00

- 0.80 - 1.25

Pre (763-2-) **and post** (763-4-) **Gd:**

F 48 Y

Sequence = fl3dt1_fe34_476rb97.ykc TR/TE/FA = $20.1/6.5/25^{\circ}$ Acq = 1 Matrix = $384 \times 5120s \times 56$ slices FoV = 270×270 Voxel size = $0.70 \times 0.53 \times 3.0$ mm³ TA = 7 min 15 sec

TA =

Arvid Lundervold COST B11 WG 3 Angers, 2001

Pre (763-3-) Gd:

Sequence = tse5_14b130_85b130.wkc TR/TE1/TE2 = 5000.0/14.0/85.0 Acq = 1 Matrix = 340 x 512os x 45 slices FoV = 270 x 270 Voxel size = $0.79 \times 0.53 \times 3.0 \text{ mm}^3$ TA = 5 min 46 sec

SIEMENS VISION 1.5 T

Post Gd (12:36)

_

Pre Gd (12:51)

T2 (12:44)

=

PD (12:44)

763-2-30 SP 34.0

tumor3_wm2_phant1_roi.bmp

Textural parameters ...

	DHPRice - Histogram drawing			1						e Insty	ytut Elektro	niki ^{Cooyigh} Iska milina	an 1968-2000 by Profe gen Londer by Michae	Scopinski d friedinger
į.	nage: 763-2-29.ima	•	4azda - op	otions					×					
ľ	101: tumor3_wm2_phan11_roi.bmp		Features	Maps										
1	56	Area: 78 Min. lum												Help
1	28	Max. lur	🔽 RLM	features	COM features		🔽 Grad	lient features						-
1	1 510	1024		ts/pixel-		Distances—	Gradien	t bits/pixel	1					
1	1 312	1024	08		08		0.12	07						_
1	44	Min. lum	66		6		0 10	0.5		. 6.4				
1	22	Max. Iut	0.5		0.5		0 9	04		t x 64. Distar	nces = 1			
1	0	1074	04		C 4	5	0.8	- · ·						
1	*	Area: 52	– Normali	sation —		-				2(geeen) 619	3(blue) 626	4(cyan) 540	5(magenta) 912	6(jellov) 583
1	<i>n</i>	Min. lum		O Defa	ult 💿	⊧/-3 sigma	O 1%-	- 99%		75.54	86.147	135.88	38.486	134.09
1	"	Max. 101								-0.47751 1.2251	82.499 0.58334 0.12952	25.1.38 0.028466 -0.25432	242 0.14207 -0.49649	31.4 0.15703 0.25550
1	0	1024		🔽 Hist	ogram features	🔲 Save hist	ogram data			56 66	69 75	125 129	6 19	123 127
1	47	Area: 54		🔽 AR	model	🔽 Draw hist	ogram			76	85	136	30	134
1		Min. lum Max. lum												
1	4					Πκ		Cancel						
1	1 512	1024												
1	31	Area: 912												
1	15	Min. lum.: 4 Max. lum.:	4 84											
1														
1	1 512	1024												
1	54	Area: 583												
1	27	Min. lum.: 1 Max. lum.:	116 155											
ole	1 512	1024												

T2-weighted pre Gd

3(blue)

1196.1

7740.4

-1.0264

0.80836

941

1060

1211

626

4(cyan)

526.04

1820.4

0.24268

0.18984

430

476

524

54Ó

2(green)

1329.2

5533.4

1.6682

1113

1228

1340

-0.83321

619

Image File: 763-3-124.ima

Image size: 512 x 512

Histogram analysis = Yes Normalisation = 3 sigma

AR model analysis = Yes

Histogram data = No

Area =

Mean =

Variance =

Kurtosis =

Perc. 1% =

Perc.10% =

Perc.50% =

•

Skewness =

Min_lum : 1 Max. lum : 3253 Bits/pixel: 12

ROI File: tumor3 wm2 phant1 roi.bmp

Gradient analysis = Yes, Max pixel value = 64 RL matrix analysis = Yes, Dimension = 64

CO matrix analysis = Yes, Dimensions = 64 x 64, Distances = 1

1(red)

1232.4

6925.6

0.17874

-0.82624

1074

1128

1225

787

- 🗆 ×

5(magenta)

912

473.43

44326

64

200

463

0.21897

-0.43369

6(yellow)

583

570.51

3153.1

0.32756

-0.11421

461 500

568

Help

۰

COST B11 WG 3 Angers, 2001

T1-weighted post Gd 8 8MPriew - Histogram drawing -INX ROE tumor3_wm2_phant1_roi.bmp Area: 787 Min. lum.: 127 Max. - 🗆 × 🙀 MaZda - Image: 763-4-175.ima ROI: tumor3_wm2_phant1_roi.bmp File ROI Analysis Help 512 1024 Image File: 763-4-175.ima ۰ ROI File: tumor3_wm2_phant1_roi.bmp Area Image size: 512 x 512 Min. Max Min. lum.: 1 Max. lum.: 862 Bits/pixel: 10 512 1024 Histogram analysis = Yes Normalisation = 3 sigma Area Gradient analysis = Yes, Max pixel value = 64 Min. Max RL matrix analysis = Yes, Dimension = 64 CO matrix analysis = Yes. Dimensions = 64 x 64. Distances = 1 AR model analysis = Yes Histogram data = No 512 3(blue) 4(cyan) 5(magenta) 6(yellow) Aren 1(red) 2(green) Min. Width: 512 Area = 787 619 626 540 912 583 Max. Height: 512 Mean = 188.42 156.04 182.29 137.8 37.641 138.72 Min. lum.: 1 520.64 1407.7 696.59 33,551 243.06 53,549 Max. lum.: 862 Variance = -0.42399 -0.048842 0.18386 0.16952 0.12511 512 1024 -0.11921Bits/pixel: 10 |Skewness = -0.30961Kurtosis = -0.57788-1.05480.075697 -0.44713 0.557 Area Perc. 1% = 137 63 132 126 6 119 Mir Perc.10% = 157 104 146 130 18 130 Max 10 Perc.50% = 188 161 184 138 37 139 • 512 1024 Area: 583 1.1 Min. lum.: 117 Max. Jum.: 166 512 1024

Angers, 2001

💕 BMP¥iew - Sigma	- 🗆 🗙 View - Sigma	<u> </u>
File		
		Production of the
		把限制在目标形式
	200 Attended Attended	日本世界正式主义
	THE PERSON AND A CONSIGNATION OF	
		自由的自己的自己
The Law States		SH LEAST
		医//如果
		2/中街清朝

Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold COST B11 WG 3 Angers, 2001

Arvid Lundervold COST B11 WG 3 Angers, 2001

Some conclusions and perspectives ...

- Glioma is a good <u>driving application</u> to explore different structural and functional MR imaging techniques allowing histological verification of MR findings and postprocessing results
- In experimental brain tumors such verification can be done slice-by-slice, and different tissue tissue textures ca be "engineered" by using different tumor cell-lines.
- The value of texture analysis in MRI can be improved when texture features are extended to 3D imaging ("3D texture") and multispectral imaging ("color texture").

k-means clustering

k=10

Definitions of texture parameters computed by MaZda :

Histogram

Histogram-based features

Note

To keep consistency with the formulas used in the standard references [1], [2] on texture analysis, it is assumed in MaZda that the intensity of image under analysis changes from 1 to Ng, where $Ng = 2^k$, and k is the number of bits per pixel. Thus if originally the image intensity changes from 0 to Ng-1, MaZda converts this image internally, such that its intensity changes from 1 to Ng. Consequently, the summation indices in the formulas listed below span the range from 1 to Ng.

In the formulas that follow, p(i) is a normalized histogram vector (i.e. histogram whose entries are divided by the total number of pixels in ROI), $i=1,2,...,N_g$, and N_g denotes the number of intensity levels.

References

 R. Haralick, K. Shanmayam and I. Dinstein, Textural Features for Image Classification, IBBS Transactions on Systems, Man and Cybernetics, 3, 6, 1973, 610-621.

[2] R. Haralick, Statistical and Structural Approaches to Texture, Proceedings IEEE, 67, 5, 1979, 786–804.

[3] R. Lerski, K. Straughan, L. Shad, D. Boyce, S. Blaml and I. Zuna, MR Image Texture Analysis – An Approach to Tissue Characterization, Magnetic Resonance Imaging, 11, 1993, 873-887.

[4] A. Materica and M. Strzelecki, Texture Analysis Methods – A Review, COST B11 report (presented and distributed at MC meeting and workshop in Brussels, June 1998), Technical University of Lodz, Poland, 1998.

[5] Y. Hu and T. Dennis, Textured Image Segmentation by Context Enhanced Clustering, IEE Proc.-Visual Image and Signal Processing, 141, 6, 1994, 413-421.

MaZda User's Manual © 1999-2000 by Andrzej Materka

Gradient

Gradient-based parameters

MaZda User's Manual © 1999-2000 by Andrzej Materka

For the gradient feature calculation the following neighborhood for image pixel x(i, j) is defined:

A = BCD = EF G H I JK L x(i, j) N OR S T Ρ Q U V WY = Z

Based on this neighborhood, the absolute gradient value $(ABSV(i_{ij}))$ is calculated for each pixel:

a) for 5x5 pixel neighborhood: $ABSV5(i, j) = \sqrt{(W - C)^2 + (O - K)^2}$

b) for 3x3 pixel neighborhood: $ABSV3(i, j) = \sqrt{(R-H)^2 + (N-L)^2}$

The ABSV3 definition is used in MaZda version 2.13. For the ABSV=ABSV3 matrix of M elements (which contains absolute gradient values for ROI pixels), the gradient features are defined as follows:

RLM Run length matrix-based parameters

Let $p(i_i j)$ be the number of times there is a run of length j having grey level i. Let N_g be the number of grey levels and N_r be the number of runs. Definitions of the parameters of the run-length matrix $p(i_i j)$, as adopted in MaZda, are given below.

Short run emphasis inverse moments:
ShrtREmph =
$$(\sum_{i=1}^{N_{e}} \sum_{j=1}^{N_{e}} \frac{p(i, j)}{j^{2}})/C$$

Long run emphasis moments:
LngREmph = $(\sum_{i=1}^{N_{e}} \sum_{j=1}^{N_{e}} j^{2} p(i, j))/C$
Grey level nonuniformity:
GLevNonUni = $(\sum_{i=1}^{N_{e}} (\sum_{j=1}^{N_{e}} p(i, j))^{2})/C$
Run length nonuniformity:
RLNonUni = $(\sum_{j=1}^{N_{e}} \sum_{i=1}^{N_{e}} p(i, j))/C$
Fraction of image in runs:
Fraction = $\sum_{i=1}^{N_{e}} \sum_{j=1}^{N_{e}} p(i, j)/\sum_{i=1}^{N_{e}} \sum_{j=1}^{N_{e}} jp(i, j)$
The coefficient C is defined as
 $C = \sum_{i=1}^{N_{e}} \sum_{j=1}^{N_{e}} p(i, j)$

The above five features are calculated for four directions: horizontal (Horzl_), vertical (Vertl_), slanted at 45 degrees (45dgr_) and slanted at 135 degrees (135dgr_). The RL feature name in MaZda software contains a prefix that defines direction and feature type, for example 45dgr_RLNonUni means the run length nonuniformity calculated for 45-degree direction.

The second-order histogram is defined as the co-occurrence matrix $h_{d,\beta}(i,j)$ [1]. When divided by the total number of neighboring pixels $R(d,\beta)$ in ROI, this matrix becomes the estimate of the joint probability, $p_{d,\beta}(i,j)$, of two pixels, a distance d apart along a given direction θ having particular (co-occurring) values i and j. Formally, given the image f(x,y) with a set of N_g discrete intensity levels, the matrix $h_{d,\beta}(i,j)$ is defined such that its (i,j)th entry is equal to the number of times that

 $f(x_1, y_1) = i$ and $f(x_2, y_2) = j$,

where $(x_2, y_2) = (x_1, y_1) + (d \cos \theta, d \sin \theta)$

This yields a square matrix of dimension equal to the number of intensity levels in the image, for each distance d and orientation θ . In MaZda, the distances d = 1, 2, 3, 4 and 5 pixels with angles $\theta = 0^{\circ}$, 45°, 90° and 135° are considered. Reduction of the number of intensity levels (by quantization to fewer levels of intensity) helps increase the speed of computation, with some loss of textural information.

The co-occurrence matrix-derived parameters computed by MaZda are defined by the equations that follow, where μ_x , μ_y and σ_x , σ_y denote the mean and standard deviations of the row and column sums of the co-occurrence matrix, respectively [related to the marginal distributions $p_x(i)$ and $p_y(j)$]. R is the total number of neighboring pixel pairs, which normalizes the co-occurrence matrix to the probability distribution.

COM

Arvid Lundervold COST B11 WG 3 Angers, 2001

Entropy:
Entropy =
$$-\frac{1}{R} \sum_{i=1}^{N_x} \sum_{j=1}^{N_x} p(i, j) \log(\frac{1}{R} p(i, j))$$

Difference variance:
DifVarne = $\sum_{i=0}^{N_x-1} (i - \mu_{n-p})^2 p_{n-p}(i)$
where $\mu_{x,y}$ is a mean value of difference distribution $p_{x,y}$:
 $p_{x-y}(k) = \frac{1}{R} \sum_{i=1}^{N_x} \sum_{j=1}^{N_x} p(i, j)$
 $k = 0, 1, ..., N_y = 1$

Co-occurrence matrix-derived parameters

MaZda User's Manual © 1999–2000 by Andrzej Materka

Angular second momentAngSoMom
$$= \frac{1}{R^2} \sum_{i=1}^{N_e} p(i,j)^2$$
Contrast $Contrast = \frac{1}{R} \sum_{i=0}^{N_e-1} 2 \sum_{i=1}^{N_e} \sum_{j=1}^{N_e} p(i,j)$ Correlation: $= \frac{1}{R} \sum_{i=0}^{N_e} \sum_{j=1}^{N_e} (ip(i,j) - \mu_e \mu_p)$ Sum of squares: $SumOfSqs = \frac{1}{R} \sum_{i=1}^{N_e} \sum_{j=1}^{N_e} (i - \mu_e)^2 p(i,j)$ Inverse difference moment: $InvDfMom = \frac{1}{R} \sum_{i=1}^{N_e} \sum_{j=1}^{N_e} \frac{1}{1 + (i - j)^2} p(i,j)$ Sum average: $SumAverg = \sum_{i=1}^{2N_e} ip_{x+p}(i)$ Sum variance: $SumVarne = \sum_{i=1}^{2N_e} p(i,j) = k - 2,3...,2N_g$ Sum entropy: $SumEntrp = -\sum_{i=1}^{2N_e} p_{x+p}(i) \log(p_{x+p}(i))$ Difference entropy: $Diffentrp = -\sum_{i=1}^{N_e} p_{x+p}(i) \log(p_{x+p}(i))$

The autoregressive (AR) model assumes a local interaction between image pixels in that pixel intensity is a weighted sum of neighbouring pixel intensities. Assuming image f is a zero-mean random field, an AR causal model can be defined as

$$f_s = \sum_{r \in \mathcal{N}_s} \beta_r^2 f_r + e_s$$

where f_s is image intensity at site s, e_s denotes an independent and identically distributed (i.i.d.) noise, N_s is a neighbourhood of s, and θ is a vector of model parameters. The local neighbourhood for AR model implemented in MaZda, represented by 4 parameters, is shown in Fig. 7.1. Shaded area in Fig. 7.1 indicates region where valid causal half-plane AR model neighbourhood may be located, in general.

AR

Autoregressive model parameters

MaZda User's Manual © 1999-2000 by Andrzej Materka

Arvid Lundervold COST B11 WG 3 Angers, 2001 Using the AR model for image segmentation consists in identifying the model parameters for a given image region and then using the obtained parameter values for texture discrimination. In the case of simple pixel neighbourhood shown in Fig. 7.1, that comprises 4 immediate pixel neighbours, there are 5 unknown model parameters – the standard deviation σ of the driving noise e_s and the model parameter vector $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3, \theta_4]$. The parameters can be estimated by minimizing the sum of squared error

$$\sum_{s} e_{s}^{2} = \sum_{s} \left(f_{s} - \hat{a} v_{s} \right)^{2}$$

which leads to the following linear equations:

$$\hat{\boldsymbol{\mathscr{O}}} = \left(\sum_{s} \boldsymbol{w}_{s} \boldsymbol{w}_{s}^{T}\right)^{-1} \left(\sum_{s} \boldsymbol{w}_{s} f_{s}\right)$$

 $\sigma^2 = N^{-2} \sum_{s} (f_s - \partial w_s)^2$

where $\boldsymbol{w}_s = \operatorname{col}[f_i, i \in \mathbb{N}_s]$, and the square $N \times N$ image is assumed. The above set of equations is numerically solved in MaZda for each ROI of interest.

Image conversion in Matlab

```
function A = al_dcm2raw(file_dir, filename, xsize, ysize, d)
% AL_DCM2RAW read UINT16 binary xsize*ysize data with DICOM header, write as RAW
% i.e. <filename>.dcm --> <filename>.raw in order to use .dcm-files
% with Matlab and as 'raw' format in the MaZda MRI texture analysis software (COST B11)
% Arvid Lundervold, 10-APR-2001
```

```
[fname_dcm, errmsg] = sprintf('%s/%s.dcm', file_dir, filename);
[fname_raw, errmsg] = sprintf('%s/%s.raw', file_dir, filename);
[fid, message] = fopen(fname_dcm,'r','native'); % local MACHINEFORMAT
```

```
status = fseek(fid, -xsize*ysize*2, 'eof'); position = ftell(fid); status = fseek(fid, position, 'bof');
[M, count] = fread(fid,[xsize,ysize],'uint16');
                                                           if d == 1 % Display image matrix A
fclose(fid);
                                                            hi = max(max(A));
A = M'; % A can now be displayed .....
                                                            lo = min(min(A));
                                                            imagesc(A, [lo hi]); colormap(gray); colorbar('h'); axis image;
                                                            [txt, errmsg] = sprintf('%s: min=%s max=%s',...
% Write <filename>.raw image to disk
                                                                        filename, num2str(lo), num2str(hi));
A_us = uint16(round(flipIr(A')));
                                                            title(txt);
                                                           end
[fid_raw, message] = fopen(fname_raw, 'wb', 'n');
fwrite(fid_raw, A_us,'uint16');
fclose(fid raw);
```