Texture Analysis of Human Liver

Final result from MRI of Cirrhotic Patients 2000

D.Jirák, M.Dezortová, P.Taimr, M.Hájek

IKEM Prague

Aim of the Study

- To classify MR images of healthy and disordered liver by TA
- To find features of texture analysis which describe the texture of MR images of the human liver by the most discriminative power
- To test the ability to determine liver using statistical methods (PCA, LDA,....)

Experiment

- 1.5 T Vision System whole-body MR imager with the commercial dual ¹H/³¹P surface coil
- MRI sequences: T2w BH (Breath Hold) transversal slices (8 mm, TR/TE=4200/138 ms, 350 FOV) 1 ACQ (BH), 10 ACQ

Child-Pugh (CP)

Clinical relevance

- Child-Pugh is a sum of five clinical examinations: ascites, protrombine time, bilirubin level, albumin level (in the blood), degree of hepatic encephalopathy
- Each examination is evaluated using a 3 point scale according to liver injury

Subjects

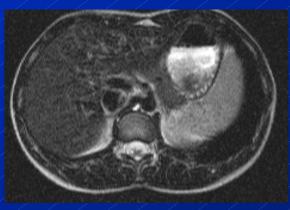
• 10 healthy volunteers (41.8±14.0 yrs)

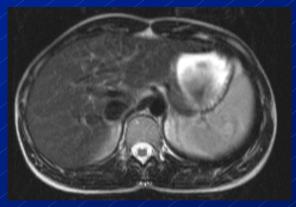
43 patients (49.7±9.0 yrs) with liver cirrhosis of different etiology
 Category A, B, C

Data

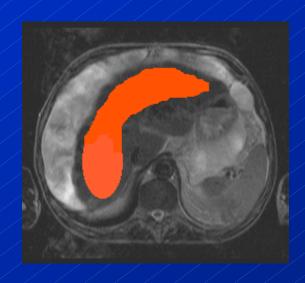
43 patients (we used 161 images)+10 healthy volunteer in each category A,B, C

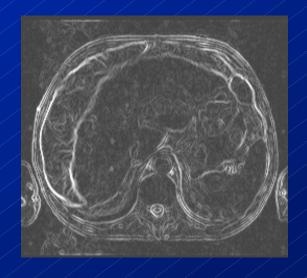
CP	number of patients	number of images
A	4	15
B	13	45
C	22	77
UN	4	24


MR Imaging of normal liver


Inspiration, FOV=350

Exspiration, FOV=350


FOV=300, ACQ=1


FOV=300, ACQ=10

Cirrhotic Patient (CP=11) Gradient Map from MAZDA

The choice of ROI

Transversal slice

Gradient map

Data evaluation

- Mazda is a computer program for calculation of texture parameters (features) in digital images
- Convert converts data to B11 format and also automaticly selects features for texture analysis
- B11 is made for the quantitative classification of the images according to selected features

MAZDA Parameters Five sets of TA parameters

- Mean, Skewness, Kurtosis, Gradient Mean, GrKurtosis, Gradient Skewness, Contrast, Correlation, AngScMom, Entropy
- Mean, Skewness, Kurtosis, Gradient Mean, GrKurtosis, Gradient Skewness

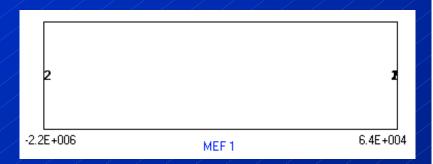
MAZDA Parameters Five sets of TA parameters

- Mean, Skewness, Kurtosis
- Contrast, Correlation, AngScMom, Entropy
- Contrast, Correlation, AngScMom, Entropy, Difference Variance, Sum Of Variance, InvDfMom, Sum Average, Difference Entropy, SumEntrp

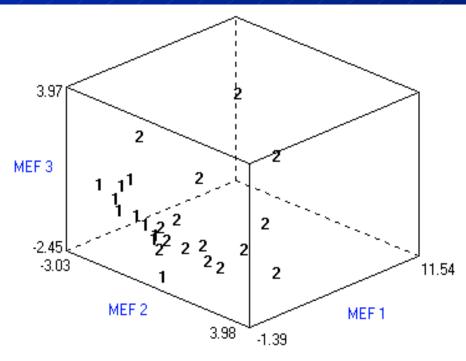
Examinations

- Comparison each group (A,B,C) with controls
- Studying all patients altogether and compared them with the controls
- Comparison each group patients among them

Examinations


- Examination "unknown" data by comparison other patients and controls
- Dividing patients onto three groups according to their bilirubin level
- Testing all chosen features (16) in singles

Results


Group A, first set of TA parameters

PCA (non standart, data)

PCA (with standartization data)

healthy volunteer - 1 patient - 2

Results

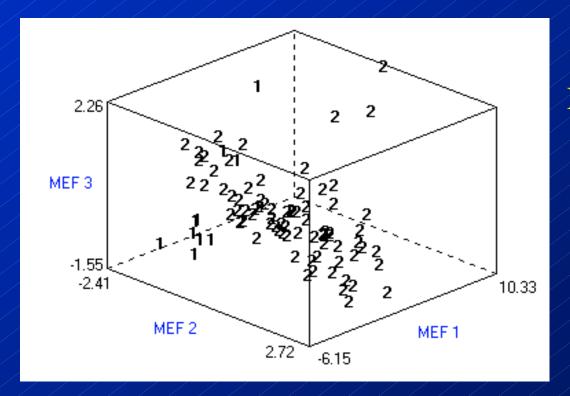
Group C x controls

Number of misclassification

Set	k-NN		NDA		ANN	
number	Y[%]	N[%]	Y[%]	N [%]	Y[%]	N[%]
1/1//	3,1	6,2	9,3	8,3	8,3	11,3
2	5,2	5,2	11,3	10,3	12,4	12,4
3	3,1	4,1	14,4	14,4	10,3	14,4
4	1,0	11,3	11,3	12,4	14,4	14,4
5	0//	3,1	1,0	1,0	2,1	2,1

Results (from B11)

Classification of the "unknown data", Number of misclassification (clear cases)


Set of param.	Y [%]	N [%]
MM	0	0///
POE	0	0
F	4 ,2	8,3
1//1	4,2	0
2	0	0
3	0	0
4	0	8,3
5	0	8,3

Results

- Very good discrimination among patients and controls (error~7%)
- Poor discrimination among patients (error~40%)
- Best features to evaluate human liver are Kurtosis and Difference Entropy
- All used statistical methods had very similar results

What we need for clinical application?

- The possibility to work with the large database
- The posibility to mark data

PCA-group C 5.set

Conclusion

- The standard sequence was chosen
- Clinical point: to split patients on the three groups is sufficient
- We have sets of TA parameters which can be successfuly applied for TA of cirrhotic patients
- TA is available to discriminate group of patients and healthy volunteers