Hippocampal sclerosis in mesial temporal lobe epilepsy studies by MRI Texture analysis

J. Chambron, O. Yu, Y. Mauss, I. Namer

AIM OF THE WORK

- Mesial temporal refractory epilepsy is often associated to an ipsilateral hippocampus sclerosis
- From FALCONER surgery (1950), surgical therapy is able to stop the crisis.
- However a relapsing disease can be observed and would be depending of a NACLH in which:
- A middle sclerotic is difficult or impossible to identify on the basis :
- of a clinical and a qualitative MRI analysis.
- Is a **Texture Analysis** of a **NACLH** MRI able to characterise its structure as actually **normal** or **sclerotic**?

Quantitative structural and biochemical NAWGM studies is a challenge for NMR in epilepsy, multiple sclerosis and other degeneratives diseases

- MRI: T1, T2, Pr.D. weighted images ,ROI Vol. for characterising: inflammatory processes: oedema,gliosis,atrophy.
- MRSI: NAA/Ch, NAA/ Cr, NAA/ Cr + Ch, Glx,...for characterising
- neural loss.
- DWI, Diff. Tenseur MRI / ADC, F.A. M.D., for characterising structural diffuse and localised changes (anisotropy)
- MTI: MTR for characterising biochemical and structural changes in the lesionnal tissue as non active MT material: lipids, oedema,...
- In correlation with other conventional techniques:
- EEG,SEEG,MEG (synchronous electrical activities) SPECT (Ictal hyper perfusion) PET(interictal hypometabolic activities, receptors density)

Communications about NMR NAWGM in MS and EPILEPSYat the 9th ISMRM and the 18th joint annual meeting in Glasgow

NACLH-NAWM IPSIL.HIP.,MS Pl. Texture Analysis studies

EPILEPSY

10
4
2

M.S. 26
8
4

Material and Methods

Patients

23 patients with clinical and EEG evidence of unilateral refractory mesial temporal epilepsy
Ipsilateral signs of hippocampal sclerosis on MRI
Interictal hypovascularisation by SPECT
Absence of visual controlateral abnormalities on MRI

Control subjects

Control subjects without epilepsy in their medical history

CONTROL SUBJECT

RIGHT HIPPOCAMPAL SCLEROSIS

Quantitative MRI and MRS studies in Temporal Lobe Epilepsy

	control subjects	patients	
•		Ipsilateral	controlateral
	Mean NAA/Cho+Cr: 0.66 RÖI Vol.:3,4 ml 3 T. PRESS CHESS	0.43	0.56
•	Normal range ratio: 0.55-0.88		
•	T2 Mean (msec): 118.5	140.1	123. 6
•	T2 cut of > 1000 CSF suppress.		
•	T2 distrib.range: 113.9-122.1	125.1-169.1	116.1-146.6
•	0.28 T. 6 mm slice ROI Vol.23mm3CPMG	TR 2000ms TE 15 ms	48 echoes

- Normal T2 max.(W. Van Paesschen et al. Neurology 45 2233 1995 :116)
- I.J. Namer Epilepsia 40 1424-1432 1999

Method of classification

- Ipsilateral Hippocampi of the patients and hippocampi of the control subjects are classified into two groups:
 - Sclerosed Ipsilateral Hippocampi : HS
 - Normal Ipsilateral Hippocampi: HC
 - Based on a incremential canonical discriminant fonction Analysis
 - Two fonctions of classification are determined :
- F (HC) and F (HS) for the 1st Echo Image and the 10th Echo Image
- the features which contributes least to the prediction group membership are eliminated

Classification fonctions

1st echo image

10 th echo image

b F(HC)	b F(HS)	b F(HC)	b F(HS)
78.1 ENT04 -10.2COR33 -29.6	100 ENT04 -7.3COR33 -46.6	494.5 COR01 433.1 DENT04 183.6 COR33 88.9DVAR40	469.4 COR01 425.4 DENT04 168.7 COR33 80.DVAR40
based onth statistic featu	ant fonction ne first order res as variables determined	43.7CON03 21.4SAV44 -10.7CON44 -14.5SAV22 -67.8DENT44 -633.6	42.3CON03 20.2SAV44 -10.0CON44 -13.4SAV22 -51.3DENT44 -578.2

Comparison of clinical classification and texture analysis classification of the epileptic patients and control subjects

Ipsilateral Hippocampi

both the left and rigth hippocampi of the 9 control subjects were taken in account in the dicriminant procedure

1 st echo			
		clinical cla	ssification
		sclerosis	normal
Texture Anal	sclerosis	20	0
Classif	normal	3	18*

Sensitivity S=20/23=86.9%

Specificity F= 18/18 = 100%

Accuracy A = 38/41 = 92.7%

Comparison of clinical classification and texture analysis classification of the epileptic patients and control subjects Ipsilateral Hippocampi

both the left and rigth hippocampi of the 9 control subjects were taken in account in the dicriminant procedure

10 th echo			
	clinical classification		
		sclerosis	normal
Texture Anal	sclerosis	23	0
Classif	normal	0	18*

Sensitivity S=23/23=100%, Specificity F=18/18=100%Accuracy A=41/41=100%

Comparison of clinical classification and texture analysis classification of the epileptic patients and control subjects

Controlateral Hippocampi

both the left and rigth hippocampi of the 9 control subjects were taken in account in the dicriminant procedure

1st echo		
		clinical classification
		normal
Texture Anal	sclerosis	14
Classif	normal	9

Comparison of clinical classification and texture analysis classification of the epileptic patients and control subjects

Controlateral Hippocampi

both the left and rigth hippocampi of the 9 control subjects were taken in account in the dicriminant procedure

10 th echo				
		clinical classification		
		normal		
Texture Anal sclerosis		15		
Classif	normal	8		

Classification of the epileptic patients in fonction of their controlateral hippocampus structure as determined by the texture analysis

Comparison with their T2 and MRS Data

3 classes	HS 1 st echo HS 10th echo	HS 1 st HC 10 th HC 1 st HS 10 th	HC 1st echo HC 10th echo
T2 and NAA/Ch+Cr normal	4	3	2
T2 or NAA/Ch+Cr normal	2	4	2
T2 and NAA/Ch+C abnormal	2	4	0

Comparison of the T2 and the NAA/Ch+Cr ratio with the controlateral hippocampus structure structure as determined by texture analysis

Naa/(cho+cr)	T ₂ (ms)	1 st Echo	10th Echo
.47	118	C	C.
.547	126	C	C-
.47	120	C	C.
.55	118	C	C ^
.498	116	C	S
.573	117.9	C	S
.43	146	C	S
.494	122	C	S
.51	118	C	S
.73	120	C	S
.388	138.8	S	C *
.650	120.5	S	C.`
.536	126.7	S	C.
.499	121	S	C
.712	118	S	C .
.546	122	S	S
.612	118	S	S
.47	123	S	S -
.534	120.1	S	S
.44	137	S	S··
.666	120	S	S
.661	118	S	S'
.73	118	S	S-

Conclusion

Texture Analysis is a promising way to characterise

structural abnormalities

in the Normal Appearing Brain Tissue in epilepsy

, particurlarly useful

as a presurgical test in the drug rtesistant seizure

Comparison of the T2 and the NAA/Ch+Cr ratio with the controlateral hippocampus structure structure as determined by texture analysis

Naa/(cho+cr)	T ₂ (ms)	1 st Echo	10th Echo
.388	138.8	S	C *
.650	120.5	S ·	C.'
.536	126.7	S	C.
.534	120.1	S	S
.44	137	S	S ··
.73	120	C	S.
.73	118	S	S-
.55	118	C	C ^
.666	120	S	S
.661	118	S	S'
.494	122	C	S
.51	118	C	S
.47	120	C	C.
.499	121	S	C
.712	118	S	C.
.546	122	S	S
.612	118	S	S
.47	123	S	S -
.498	116	C	S
.573	117.9	C	S
.43	146	С	S
.47	118	C	C.
.547	126	C	C-